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The development of equations of state (EoS) and their application to the correlation 
and the prediction of phase equilibrium properties is a wide research field. The Altunin and 
Gadetskii EoS was given to describe the thermodynamic properties of the pure carbon 
dioxide. The supercritical, the liquid and the gas states of carbon dioxide are represented 
accurately. Whereas, at the vicinity of the critical point, which is characterised principally by 
the divergence of compressibility, the Altunin and Gadetskii [1] EoS needs other corrective 
terms to stabilise fitting of the state and calculate accurately thermodynamic functions as the 
specific heat at constant volume or pressure and the sound celerity.  
The original equation proposed by Altunin and Gadetskii and its tremendous importance in 
describing the carbon dioxide behaviour are analysed. A numerical implementation of the 
EoS, at the critical region, is performed by digitalizing corrective abacus given in the 
literature [2]. This work is followed by a numerical estimation of different thermodynamic 
functions as Cv, at the vicinity of the critical point, using limited development techniques. The 
domain of validation is showed when comparing results of the calculation and those 
determined experimentally and given by several authors.  
 
I- INTRODUCTION  
At present, even in the critical region, thermodynamic behaviour of pure components are most 
frequently modelled by classical equations of state, including commonly used cubic 
equations, such as the Redlich–Kwong and Peng–Robinson equations of state. Some non-
classical models with theoretical or effective critical exponents are available, such as Bender 
model [3] and related models that incorporate crossover functions to connect the critical and 
non-critical regions [4]. Such models are currently used in a correlative rather than a 
predictive mode, since, in general, they require the critical locus as input as well as a number 
of adjustable parameters that can be determined only when extensive experimental data are 
available. 
The critical point of a pure fluid is defined by the following conditions: 

0
V
P

T

=







∂
∂ and 0

²V
P²

T

=







∂
∂ (1) 

P, V, T and ρ denote respectively pressure, volume, temperature and density of the fluid. 
Working near the critical point, the isothermal compressibility (kT), at a few Celsius degrees 
from the critical temperature, is much higher than that of a perfect gas at the same density.  
The isothermal compressibility and the heat capacity at constant pressure of a fluid (Cp), are 
two well known physical properties that diverge to infinity in the vicinity of the critical point 
of a pure substance. Some studies developed by Bagatskii et al. [5], Voronel et al. [6] and by 
Lipa et al. [7] strongly suggest that the specific heat at constant temperature (Cv), also 
becomes infinitive at the critical point, which is in disagreement with the classical Van der 
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Waals theory. However, as pointed out by Sengers [8], the divergence of the Cv is weak 
compared to that of the kT.

II- GOVERNING EQUATIONS  
II-1 Complete equation of state: 
The analytic Altunin and Gadestkii EoS is written as:  
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Where ρr=ρ/ρc and τ=Tc/T. Z is the compressibility factor and R is the perfect gas constant. 
The c letter indicates the critical point and bij coefficients are given in the IUPAC tables [2]. 
A separate EoS was needed for the critical region within about  ± 5 K of the critical 
temperature. The equation of Schofield et al [3] was chosen for use. This equation is in terms 
of two variables, r and θ, which may be regarded as polar coordinates centred on the critical 
point and are related to the density and the temperature by the set of equations: 
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They are related to the pressure by the following parametric equation: 
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Where q is a function of θ, given as follows: 
42 66053.560796.8298893.36)(q θ+θ−=θ . (6) 

The complete EoS is formed by combining equations (2) and (5) in such a way that one of the 
other is predominant in its appropriate region using a switching function f(r). 
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Where f(r) is expressed by: 
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A and S indices notice respectively the analytic and the critical expressions of the pressure. 
 
II-2 Constants: 
Values of different constants needed to evaluate the pressure at the critical region PS are: 
n1=3/2  ; n2=3; a=0.065; β=0.347; δ=4.576; g=1.491. 
Concerning parameter c, its value depends on the relative temperature (T/Tc). We noticed that 
parameter c= 240.435 for T>Tc and c= -58.383 for T≤Tc. 
 
II-3 Heat capacities and sound celerity: 
Isochoric heat capacity is one of the important thermodynamic characteristics of fluids and 
fluid mixtures. The EoS does not sufficiently correctly reproduce the values and behaviour of 
Cv. The role of calorimetric measurements to develop an EoS is very important, especially 
near the critical and phase transition points. Isochoric heat capacity data contain direct 
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capacity at constant volume Cv is related to the EoS by: 
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U is the internal energy. 

That gives: 
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Where CV0 is the ideal gas heat capacity written as: CV0=CP0-R  (11) 
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Where CT/T=τ and γi are tabulated constants in the IUPAC [2]. 

The heat capacity at constant pressure, Cp is related to Cv as follows: 
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Finally, the sound velocity C of a pure component can be expressed by the relation: 
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And as a function of heat capacities we write: 
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III- NUMERICAL TECHNIQUES 
 
III-1 Implementation of the corrective pressure near the critical point: 
The Newton-Raphson method is one of the better known algorithms for finding the root of an 
equation in the form f(θ)=0. Equations (3) and (4) are combined to get a new function 
depending only in θ. Indeed, we write:  
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Boundary values of θ are chosen as 1 and -1. The convergence criterion is fixed at very low 
error evaluation, less than 10-10.
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III-2 Evaluation of the pressure derivatives: 
In numerical analysis, we are usually able to obtain the derivative of a function by the 
methods of elementary calculus. However, if a function is very complicated or known only 
from values eq.(7), it may be necessary to resort to numerical differentiation. Methods for 
approximating these partial derivatives on a discretised scheme are well established in 
literature [11]. In this study, the values of the partial derivatives of pressure are approximated 
by finite difference methods.  
In equations of heat capacities (10 and 13) and that of sound velocity (15), both first and 
second derivatives of pressure are evaluated using centred discretisation. Variables dT and 
dρ are elementary steps of both temperature and density.  Consequently, if we want to keep 
round-off errors down, we should use a large value of dT and dρ. On the other hand, it can be 
shown that the truncation error is approximately proportional to hp, where h is an elementary 
step and p is a positive integer. This must be sufficiently small for the truncation error to be 
tolerable.  
 
The first derivatives are discretised in a centred manner with a double precision and a 
truncation error of (dT²) as given in the following: 
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The second derivative of pressure is discretised in a centred scheme using two methods called 
three points and five points rules. The central difference formula for the second derivative, 
based on three points is written as: 
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To get more precision in calculation, we write the central difference formula for the second 
derivative, based on five points rule as: 
 

)h(O
h3

)hx(f)hx(f)h2x(f)h2x(f)x(f 4
2 +++−−++−=′′ (22) 

That gives : 

2
j,1ij,1ij,21ij,2i

2

2

T.3
PPPP

T
P

∆

+−+
≈








∂
∂ −+−+

ρ

(23) 



5

300 400 500 600

7200000

7250000

7300000

7350000

7400000

7450000

7500000

303,8

304
304,1
304,15

304,5

305

Pr
es

su
re

(P
a)

Density (Kg.m-3)

It must be recognized that numerical differentiation is subject to considerable error; the basic 
difficulty is that, while f (x) - f (x+h) may be small, the values of derivatives f'(x) and f"(x), 
may be very large. Thus, we should choose the optimal elementary variations of temperature 
and density to stabilise numerical determination and to separate the appeared physical 
discontinuities (of the critical point) and those of the scheme (numerical instabilities). 

VI – RESULTS 

In figure 1, different isotherms near the critical point are given by both analytic and complete 
equations using expressions (2) and (7). Dashed lines deal with the analytic representation of 
the state and solid lines showed the full EoS. We notice that the analytic equation oscillated in 
the critical region and reproduced poorly the carbon dioxide state in this zone. Moreover, the 
validity of the analytic equation, in the critical region, is juged by drawing the relative error ε
calculated as: 

P
PP A−

=ε (24) 

Figure (2) shows the variation of relative error ε with density for different isotherms. We 
notice that ε is minor when the temperature T is close to that of the critical point. Far from the 
critical isotherm, error ε increases but can not exceed 2,5 %. Indeed, using the analytic 
equation of pressure PA, gives a good approximation of the pressure except very close to the 
critical point. We conclude that  comparison of the analytic equation with the complete EoS 
showed excellent agreement, which is best appreciated from figure (1), and numerical 
comparisons showed the disagreement to be generally about ±1 per cent, with maximum 
difference of 2,5 per cent. 

 

Figure (1) – Different isotherms of pure carbon dioxide near its critical point calculated using 
(eq. 2 : dashed line) and (eq. 7 : solid line). 
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Figure (2) – Variation of error e (eq. 24) as a function of density for different isotherms of 
pure carbon dioxide near its critical point. 

Figure 3 shows that Cv of pure carbon dioxide is nearly independent of pressure in the high 
pressure region, indicating that the intermolecular interaction is not sensitive to pressure as 
the fluid is far from the critical region. In other words, the properties of the fluid far from the 
critical points do not vary with pressure considerably, which is similar to conventional 
liquids. The dependence of Cv in the critical region on temperature is more complex. The 
analytic equation can not produce the experimental data of Beck et al [12] at this region. 
Therefore, there exists a maximum in Cv versus temperature curve for CO2, as can be seen in 
figure 3.   
As the temperature and the pressure approached the critical point, the compressibility is 
larger, and the clustering is more pronounced. The heat capacity results from the fact that the 
fluid absorbs energy as temperature rises. If clusters exist in the fluids, the degree of 
clustering should be decreased as temperature rises, i.e., some of the members in the clusters 
enter the bulk, which needs some additional energy. The results near the critical point are not 
sufficiently close to it using the analytic equation of Altunin. Whereas, the complete 
formulation of the pressure (7) can not gives accurate calculation of the second derivatives as 
mentioned in (III-2). A longstanding, interesting question is whether the singular behaviour of 
Cv is related to that of the second derivative of pressure. More works will be made to 
recalculate coefficients of equations (5 and 6) by fitting an important number of experimental 
Cv data. Future corrections will conserve the good agreement obtained of the pressure 
estimation in the critical region and will gives an accurate calculation of the second derivative 
of pressure as noticed in the Cv (eq. 10).  
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Figure (3) – Comparison of Cv experimental measurements [12] and those deduced from the 
analytic equation of state 

The numerical integration of Cv using three or five points differentiation rules can produce 
exactly values of Cv at low and high density, figure 4. Both the two finite difference schemes 
give tolerable values of Cv when compared to that obtained from the analytic equation of 
pressure.  
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Figure (4)- Comparison between Cv deduced from the analytic EoS and the discretised one 
using 3 and 5 points rules. 
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When the isochoric heat capacity is determined, the isobaric capacity can be deduced by 
calculating first derivatives of pressure (eq. 18 and eq. 19).  From figure (5), we conclude that 
Cp is nearly independent of density in both low and high density regions.  When the reduced 
density (ρ/ρc) tends to 1, Cp exceeds high values and numerical calculation diverges.  

Figure (5)– Variation of heat capacity Cp as a function of density at different isotherms 
 
The sound celerity C is an important parameter in fluid dynamics simulation where its 
accurate estimation is a necessary step in calculation.  
 

Figure (6)– Variation of the sound velocity as a function of pressure at different isotherms 
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Therefore, many researchers have studied fluid dynamics at high density using different 
expressions of C [13] and [14]. Their results show that shock wave capture in high 
compressible regions, which is often referred to an important increasing of both Cv and Cp, 
creates numerical problems and the divergence of calculations. Therefore, figure 6 shows the 
behaviour of the sound celerity at the critical region and the abrupt discontinuities when the 
pressure is close to that of the critical point. Here, the complete equation as presented by 
Altunin et al. [1] can not offer accurate value of the parameter C and the variation of 
derivatives of pressure versus temperature is so perturbed and gives an erroneous function.  
 

V- CONCLUSION 

In this contribution, we have considered the integration of heat capacities and sound celerity 
from the equation of Altunin in the supercritical domain and also at the critical region. The 
numerical integration evaluates derivatives of the pressure using different high order finite 
difference techniques. The obtained results showed a good agreement of calculations with the 
analytic EoS. In contrast, calculation of derivatives of pressure using the complete equation of 
state diverges. Therefore, estimation of coefficients of this equation will be undertaken by 
fitting experimental data of heat capacities at the critical region of carbon dioxide. 
 
VI- REFERENCES  
[1] V. V. Altunin and O. G. Gadetskii; Thermal Engeneering, 18, n3, 120-125, 1971 
[2] S. Angus, B. Armstrong, K.M. de Reuck, International ThermodynamicTables of the Fluid 
State Carbon Dioxide 3; IUPAC, Pergamon Press, Oxford, 1976. 
[3] E. Bender; Proc 5th Symp. On thermophysical properties, ASME, New York, 227-235 
1970 
[4] L. Sun, S. B. Kiselev and J.  F. Ely; Fluid Phase Equilibria Vol  233,  n 2 , 204-219, 2005 
[5] M.I. Bagatskii, A.V. Voronel, V.G. Gusak, Sov. Phys. J.E.T.P. 16,  517–521, 1963 
[6] Y.R. Voronel, A.V. Chashkin, V.A. Popov, V.G. Simkin, Sov. Phys. J.E.T.P. 18, 568–
573,1964 
[7] J. A. Lipa, C. Edwards and M.J. Buckingham; Physical Review Letters Vol 25, n 16, 
1086-1090,1970 
[8] A. Kostrowicka Wyczalkowskaa, J.V. Sengers M.A. Anisimov; Physica A 334 482 – 512, 
2004 
[9] P Schofield, J. D. Litster and J. T. Ho; Phys. Rev. Letters, 23, 1098-1102, 1969 
[10] A. I. Abdulagatov, G. V. Stepanov, I. M. Abdulagatov; Fluid Phase Equilibria 209 55–
79, 2003 
[11] K. Mattsson and J. Nordstrom; Journal of Computational Physics 199, 503–540, 2004 
[12] L. Beck, G. Ernst,a and J. Gurtner; J. Chem. Thermodynamics, 34, 277–292, 2002 
[13] R. Arina; Applied Numerical Mathematics 51 409–426, 2004. 
[14] A. Ben Moussa, H. Ksibi, C. Tenaud, M. Baccar, Inter. Journal of Thermal Sciences, 44, 
774–786, 2005 


